Irreversible Enzyme Inhibitors. CLXIX.^{1,2} Inhibition of FUDR Phosphorylase from Walker 256 Rat Tumor by 6-Substituted Uracils

B. R. BAKER AND JAMES L. KELLEY

Department of Chemistey, University of California at Santa Barbaca, Santa Barbaca, California - 93106

Received November 25, 1989

The Walker 256 rat tumor has been found to contain a uridine phosphoryhase that can cheave FUDR to 5fluorouracil. Inhibition of this enzyme by 35 6-substituted uracils was studied. The presence of a hydrophobic bonding region on the enzyme adjacent to the active site was detected, but hydrophobic interaction was weak. The best 6-substituted uracil found in this series was the phenylamylamino derivative (**35**), which complexed to the enzyme **33**-fold better than uracil, but only 4-fold better than the substrate, FUDR.

Thymidine phosphorylase from *Eschericia coli* B³ can phosphorylyze thymidine,³ 2'-deoxymidine,³ and FUDR⁴ (5-fluoro-2'-deoxyuridine) to the corresponding base and 2'-deoxy- α ,D-ribofuranosyl 1-phosphate in a reversible reaction. In a series of 11 papers, systematic studies have led to highly potent reversible inhibitors of the *E. coli* B enzyme; these studies included the mode of pyrimidine binding,⁵ the location of hydrophobic bonding areas with 1-substituted⁶ or 6-substituted uracils,⁷⁻¹⁰ the effect of the acidity of the substituted uracils on binding,^{11,12} and irreversible inhibition.¹³ Among the best inhibitors found were 14,⁹ 16,⁹ and 23^{10} which were complexed 450-, 1100-,

and 2000-fold better, respectively, than the substrate, FUDR; the most potent compound found was the 7-chloro derivative¹⁹ of **23** which complexed to the enzyme 5000-fold better than FUDR.¹⁴ These 6

(1) This work was generously supported by Grane CA-08695 from the National Cancer Institute, $\Gamma,S,$ Public Health Service.

- (2) For the previous paper of this series see B. R. Baker, N. M. J. Vermeulen, and A. J. Ryan, J. Metl. Chem., 13, 280 (1970).
- (3) W. E. Razzell and H. G. Klorana, Bimblin, Bimplays. Acto. 28, 562 (1958).
- (4) B. R. Baker, J. Meet. Chem., 10, 297 (1967), paper LXXV of this series.
- (5) B. R. Baker and M. Kawazu, *ibid.*, **10**, 313 (1967), paper LXXIX of this series.
- (6) R. R. Baker and M. Kawazo, $ibid_{\gamma}$ **10**, 302 (1967), paper LXXVI of this series.
- (7) B. R. Baker and M. Kawazu, ibid., 10, 311 (1967), paper LXXVIII of this series.
- (8) B. R. Baker and W. Rzeszotarski, $ib(d_{\gamma},$ 10, 1109 (1967), paper CIV of this series.
- (9) B. R. Baker and W. Rzoszorarski, $ibit.,\,\mathbf{11}_i$ (39 (1968), paper CNN1 of this series.
- (10) B. R. Baker and S. E. Hopkins, *ibiti.*, **13**, 87 (1970). Japer CLXVII of this series.
- (11) B. R. Baker and M. Kawaza, $\partial d\vartheta$, 10, 316 (1967), paper LXXX of this series.
- (12) B. R. Baker, M. Kawazo, and J. D. McClore, J. Phorm. Sci., 56, 1081 (1967), paper XCIN of dis series.
- (13) B. R. Baker and M. Kawaza, $i\hbar i h,$ 56, 1086 (1967), paper C of rids series.
- (14) For the chemotherapeutic utility of a selective blockade of this enzyme see ref.4 and 15,
- (15) B. R. Baker, "Design of Active-Site-Directed Dreversible Enzyme Inhibitors," John Wiley & Sons, Inc., New York, N. Y., 1967, pp 79–81.

substituents were complexed to a hydrophobic bonding region on the enzyme.

The next phase was to study the reversible inhibition of an enzyme in a rat tumor that could eleave FUDR to FU; such an enzyme has been found in the Walker 256 rat tumor.¹⁶ However, in contrast to *E. coli*, there are two enzymes in mammalian sources that can eleave FUDR to FU. Mammalian uridine phosphorylase is less specific than *E. coli* uridine phosphorylase since the mammalian enzyme can also cleave thymidine and 2'-deoxyuridine.^{16–21} but the *E. coli* enzyme cannot.^{3,22} Both mammalian^{16–21} and *E. coli*³ thymidine phosphorylases are highly specific for 5-Rnracil-2'-deoxyribosides where R = H, CH₃, or halogen, but do not cleave uridine.

The Walker 256 enzyme has been shown to be a uridine-deoxyuridine phosphorylase (EC 2.4.2.3).^{15,18} It is not surprising in retrospect that 14, 16, and 23 were relatively poor inhibitors of the Walker 256 uridine phosphorylase: they only complexed about as effectively as the substrate, FUDR. Therefore, it was necessary to completely reinvestigate what type of substituted uracils might give a strong hydrophobic interaction with the Walker 256 uridine phosphorylase cleaving FUDR to FU. Inhibition of the Walker 256 FUDR phosphorylase by 6-substituted uracils was investigated and the results are the subject of this paper; in the papers that follow, inhibition by 1-substituted²³ and 5-substituted uracils²⁴ are reported. By proper choice of substituents and position on uracil. inhibitors of the Walker 256 FUDR phosphorylase have been found that complex 800-fold better than the substrate FUDR.24

Enzyme Results.—The parent macil (1) was complexed to the Walker 256 enzyme 7-fold less effectively than the substrate. FUDR (Table I). Introduction of a 6-amino group gave **2** which was slightly less ef-

- (16) M. Zimmernan, Binchen, Binphys. Res. Commun., 16, 600 (1961).
- (17) E. W. Yamada, J. Biol. Chem., 243, 1649 (1968).
- (18) T. A. Krenitsky, J. W. Mellors, and R. K. Barelay, *ibit.*, **240**, 1281 (1965).
 - (19) P. Langen and G. Etzold, Biochem. Z., 339, 190 (1963).
- (20) B. Prenssel, G. Ezold, D. Bärwelff, and P. Langen, *Biochem. Pharma-cal.*, **18**, 2035 (1969).
- (21) H. Pontis, G. Degerstedt, and P. Reichard, Biochim. Biophys. Acta, 51, 138 (1961).
 - (22) L. M. Paege and F. Seidenk, Arcs. Binchem, Binphys., 40, 42 (1952).
- (23) B. R. Baker and J. L. Kelley, J. Med. Chem., 13, 458 (1970), paper CLNN of this series.
- (24) B. R. Baker and J. L. Kelley, *ibid.*, **13**, 461 (1970), paper CLXX1 of this series.

TABLE I INHIBITION^a OF WALKER 256 FUDR PHOSPHORYLASE BY

H H								
No.	R	I_{50} , $\mu M^{b,c}$	No.	R	Iso, $\mu M^{b,c}$			
1	Н	2900	20^{l}	NHCH ₂ C ₆ H ₄ -2-Cl	240			
2	\mathbf{NH}_2	4000	21^{l}	NHCH ₂ C ₆ H ₄ -3-Cl	330			
3d	$CH_2C_6H_5$	4400	22^{l}	NHCH ₂ C ₆ H ₄ -4-Cl	500			
4^e	COC_6H_5	>8000/	23^n	$\rm NHCH_2$ - α - $\rm C_{10}H_7$	240			
ō°	OC_6H_5	8100	24	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{5}$ - 5 - Br^{i}	550			
6e	$SC_{6}H_{5}$	>2000/	25^{i}	$N(CH_3)CH_2C_6H_5$	1500^{m}			
7e	$\mathrm{SO}_2\mathrm{C}_6\mathrm{H}_5$	2600	26^{i}	$NHCH(CH_3)C_6H_5$	8000^{m}			
8 ^e	${ m NHC_6H_5}$	>2000/	27^{l}	$NHCH(C_6H_5)_2$	380			
90	$CH_2C_6H_4NO_2-m$	>2000/	28^{t}	$N(CH_2C_6H_5)_2$	410			
10^{h}	$CH_2C_6H_5$ (2-thio) ⁱ	>4000/	29^{t}	$\mathbf{NHCH}(\mathbf{C_6H_5})\mathbf{CH_2C_6H_5}$	1500			
11^{i}	$\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{\circ}$ -5- Br^{i}	330	30e	$NH(CH_2)_2C_6H_5$	1600			
12^{i}	$\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{NO}_{2}\text{-}m\text{-}5\text{-}\mathrm{Br}^{i}$	150	31	$NH(CH_2)_3C_6H_5$	850^{m}			
13^k	$n-C_5H_{11}-5-C_6H_5N=N^i$	570	32	$NH(CH_2)_4C_6H_5$	280			
14^l	$\mathrm{NHC}_{6}\mathrm{H}_{3}$ -2,3- Me_{2}	600^{m}	33	$NH(CH_2)_3OC_6H_5$	200			
15^{l}	$\mathrm{NHC_{6}H_{3}-2,6-Me_{2}}$	3500	34	$\rm NH(CH_2)_4OC_6H_5$	>2801			
16^{l}	$\mathrm{NHC}_{6}\mathrm{H}_{3}$ -2,3- Cl_{2}	400^{m}	35	$NH(CH_2)_{5}C_6H_{5}$	86			
17^d	$(CH_2)_2C_6H_{\bar{\mathfrak{o}}}$	2700	36	NHC_4H_9 -n	1900			
18^{d}	$(CH_2)_3C_6H_5$	1800	37	$\mathrm{NHC}_{5}\mathrm{H}_{11}$ -n	390			
19^{l}	$\rm NHCH_2C_6H_5$	400						

^a The technical assistance of Maureen Baker and Julie Leseman is acknowledged. ^b $I_{50} =$ concentration for 50% inhibition when assayed with 400 μM FUDR in pH 5.9 arsenate-succinate buffer containing 10% DMSO as previously described.⁴ ° See Experimental Section. ^d Synthesis: ref 7. ° Synthesis: ref 8. ^f No inhibition at the maximum solubility which is one fourth of the concentration indicated. ^g Synthesis: ref 13. ^h Synthesis: ref 5. ^f Uracil substituent. ^j Synthesis: ref 11. ^k Synthesis: ref 12. ^l Synthesis: ref 9. ^m Estimated from the inhibition observed at the maximum solubility which is lower. ⁿ Synthesis: ref 10.

			$\mathbf{T}_{\mathbf{A}\mathbf{B}\mathbf{L}\mathbf{E}}$	II					
		Р	HYSICAL PROP	PERTIES OF					
O HN O HN NHR									
No.	R	Reaction time, hr^a	$\operatorname{Amine}_{\operatorname{ratio}^{b}}$	% yield ^c	Mp, °C, dec	$\mathbf{Formula}^d$			
31	$(CH_2)_3C_6H_5$	22	1	17"	276 - 280	$C_{13}H_{15}N_3O_2$			
32	$(CH_2)_4C_6H_5$	16	4	15^{e}	240 - 246	$\mathrm{C}_{14}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{2}$			
33	$(CH_2)_3OC_6H_5$	43/	1.3	18^{e}	239 - 247	$C_{13}H_{15}N_{3}O_{3}$			
34	$(CH_2)_4OC_6H_5$	20^{g}	2	27^{h}	264 - 266	$\mathrm{C}_{14}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{3}$			
35	$(CH_2)_5C_6H_5$	24^i	1.5	5^{j}	264 - 266	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}$			
36	C_4H_9-n	22	2	13^k	$273-274^{i}$				
37	C_5H_{11} -n	14	2	11^{m}	267-268	$C_9H_{15}N_3O_2$			

^a All compounds were made using method B of ref 8. ^b Ratio of amine to 6-chlorouracil. ^c Yields are for analytically pure material and are minimum. ^d All compounds were analyzed for C, H, and N. ^e Recrystallized from MeOEtOH. ^f For starting amine see B. R. Baker and J. L. Kelley, J. Med. Chem., 12, 1039 (1969). ^e For starting amine see D. G. Doherty, R. Shapira, and W. T. Burnett, Jr., J. Amer. Chem. Soc., 79, 5667 (1957). ^h Recrystallized from DMF. ⁱ For starting amine see N. K. Kochetkov and N. V. Dudykina, Zh. Obshch. Khim., 28, 2399 (1958). ^j Recrystallized from MeOEtOH-H₂O. ^k Recrystallized from EtOH-MeOEtOH. ^l Mp 265° (dec) reported for this compound by a different method; S. Kuwada, T. Masuda, T. Kishi, and M. Asai, Chem. Pharm. Bull. (Tokyo), 8, 798 (1960). ^m Recrystallized from H₂O-EtOH.

fective than 1. Bridging of a Ph group to the 6 position of uracil by CH_2 (3), O (5), S (6), SO₂ (7), or NH (8) gave no increase in binding to the enzyme. Substitution of a *m*-NO₂ (9) on 6-benzyluracil (3) gave no appreciable increment in binding. However, substitution of 5-Br (11) on 3 gave a 13-fold increment in binding and similar results were seen with 12 vs. 9; this enhanced binding is probably due to the increased acidity of the uracil ring caused by the 5-Br atom,^{11,12} or hydrophobic bonding by Br, or both.

Substitution on the Ph group of 6-anilinouracil (8) by 2,3-Me₂ (14), or 2,3-Cl₂ (16) gave a >5-fold incre-

ment in binding, indicating a hydrophobic interaction with the enzyme; the 2,6-Me₂ substituents (15) were considerably less effective.

When the benzyl group of 3 was increased in size to phenethyl (17) or phenylpropyl (18) binding was enhanced only about 2-fold.

6-Benzylaminouracil (19) was 5-fold more effective than uracil (1). Substitution on the benzyl group by Cl (20-22) gave no enhancement in binding; a similar result occurred when the benzyl group of 19 was replaced with α -naphthyl (23). Introduction of 5-Br (24), or alkyl, aralkyl, or aryl on the α -C or the N (25-29) also failed to enhance binding. The phenylamyl group of **35** was 5-fold more effective in binding than the benzyl group of **19**, but shorter alkyl bridges (30-32) or oxyalkyl bridges (33, 34) were less effective than **35**. The *n*-AmNH substituent of **37** was just as effective as the benzylamino group of **19**, again indicating a hydrophobic interaction; the *n*-BuNH group (36) was 5-fold less effective.

6-Aminouracils substituted by hydrocarbon groups are excellent inhibitors of the *E. coli* B thymidine phosphorylase cleaving FUDR to FU that can bind to this enzyme 1100–5000 times more effectively^{9,10} than the substrate. In contrast only weak hydrophobic interaction was seen with these compounds on the Walker 256 enzyme, a uridine phosphorylase that can cleave FUDR to FU. This weak interaction indicated that a hydrophobic bonding region was present on the Walker 256 enzyme, but that 6 substituents on the uracil could not properly orient for strong interaction. Therefore studies were turned to hydrophobic groups attached to the 1 or 5 positions;^{23,24} excellent inhibitors of the Walker 256 enzyme emerged that could bind 100to 1000-fold better than the substrate.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. All analytical samples had proper uv and ir spectra and moved as a single spot on the on Brinkmann silica gel GF; each gave combistion values for C, H, and N within 0.3% of theoretical.

6-Benzylamino-5-bromouracil (24).—To a stirred mixture of 0.217 g (1.0 mmol) of **19⁸** and 2 ml of AcOH at \sim 70° was added 0.351 g (1.1 mmol) of pyridinium hydrobromide perbronide. A clear solution formed which soon deposited white crystals. After 0.5 hr the mixture was cooled and diluted with 10 ml of H₂O. The product was collected, washed with H₂O, recrystallized twice from MeOEtOH, and then from AcOH: yield, 0.121 g (41%) of off-white clusters which had no definite melting point but moved as a single spot on the in 1:5 AcOH-C₆H₆ or 1:3 EtOH-C₆H₆. Anal. (C₁₁H₁₀BrN₃O₂) C, H, N. **FUDR Phosphorylase**.—This enzyme was present in the 0–45%

FUDR Phosphorylase.—This enzyme was present in the 0-45% (NH₄)₂SO₄ fraction of extracts of Walker 256. The enzyme in this fraction was stable for at least several months at -15° when stored in 1.8-ml aliquots sufficient for 1 day of use. The assay was performed with pH 5.9 arsenate-succinate as previously described,¹⁴ sufficient enzyme and time being used to give about 0.15 O.D. change in the controls.

Irreversible Enzyme Inhibitors. CLXX.^{1,2} Inhibition of FUDR Phosphorylase from Walker 256 Rat Tumor by 1-Substituted Uracils

B. R. BAKER AND JAMES L. KELLEY

Department of Chemistry, University of Oalifornia at Santa Barbara, Santa Barbara, California 93106

Received November 25, 1969

1-Substituted uracils (44) were investigated as inhibitors of Walker 256 uridine-deoxynridine phosphorylase (EC 2.4.2.3) which can also cleave FUDR to 5-fluorouracil. A good hydroearbon interaction was seen with benzyl (10), phenylbutyl (13), or phenoxybutyl (18) substituents. Further enhancement of binding of the benzyl group was achieved with m-OR substituents, the best binding being observed by m-OC₂H₅ (32) and m-C₆H₅-(CH₂)_nO (33-37) groups; 32-37 were complexed to the enzyme about 300-fold better than the parent uracil and about 40-fold better than the substrate, FUDR.

6-Arylamino-³ and 6-arylmethylaminouracils^{3,4} are excellent inhibitors of FUDR phosphorylase from *Escherichia coli* B⁵ due to a hydrocarbon interaction of the aryl or aralkyl group with the enzyme; these compounds were much less effective on the FUDR phosphorylase from Walker 256 rat tumor, although weak hydrocarbon interaction was seen.² Since it appeared that a hydrocarbon group bridged to the 6 position of uracil could not orient for maximum hydrophobic bonding,² attention was turned to possible hydrocarbon interaction from 1-substituted and 5substituted nracils. Some excellent inhibitors have emerged in both areas; the inhibition of the uridine– deoxyuridine phosphorylase (EC 2.4.2.3) from Walker 256 rat tumor with 1-substituted uracils is the subject of this paper.⁶

Enzyme Assays.—In Table I mracil (1) has $I_{50} = 2900 \ \mu M.^2$ Introduction of a 1-Me (2) substituent gave no loss in binding on this Walker 256 uridine phosphorylase; this result should be contrasted to the result with *E. coli* B thymidine phosphorylase where 2 was 33-fold less effective than mracil (1), indicating that the 1-H was a binding point to the *E. coli* enzyme, but not the Walker 256 enzyme.

Hydrophobic bonding was seen with higher alkyl groups (4-7), the maximum increment being about 15-fold compared to 1-methyluracil (2). Ring substituents were detrimental to binding; about a 2-fold loss in binding compared with 2 occurred with cyclopentyl (8) and a >6-fold loss with Ph (9).

Hydrocarbon interaction by aralkyl groups was then studied. 1-Benzyl (10) gave a 24-fold increment in binding compared with 2, but phenethyl (11) and phenylpropyl (12) were considerably less effective. Activity maximized again at phenylbutyl (13), which was 80-fold more effective than 2; phenylamyl (14) and phenyhexyl (15) were about 2-fold less effective than 13. With the phenoxyalkyl group (16-19),

⁽¹⁾ This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service.

⁽²⁾ For the previous paper of this series see B. R. Baker and J. L. Kelley, J. Med. Chem., 13, 456 (1970).

⁽³⁾ B. R. Baker and W. Rzeszotarski, *ibid.*, **11**, 639 (1968), paper CXX1 of this series.

⁽⁴⁾ B. R. Baker and S. E. Hopkins, *ibid.*, **13**, 87 (1970), paper CLXVII of this series.

⁽⁵⁾ B. R. Baker, *ibid.*, **10**, 297 (1967), paper LXXV of this series.

⁽⁶⁾ For the chemotherapeutic utility of selective inhibitors of this enzyme see (a) ref 5, and (b) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," John Wiley & Sons, New York, N. Y., 1967, pp 79-81.